Cauchy Integral and Boundary Value for Vector-Valued Tempered Distributions

نویسندگان

چکیده

Using the historically general growth condition on scalar-valued analytic functions, which have tempered distributions as boundary values, we show that vector-valued functions in tubes TC=Rn+iC obtain values. In a certain case, study structure of this value, is shown to be Fourier transform distributional derivative continuous function polynomial growth. A set used value one–one and onto relationship with distributions, generalize Schwartz space DL2?(Rn); distribution defines between these two sets. By combining previously stated results, Cauchy integral representation terms value.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector-valued Laplace Transforms and Cauchy Problems

This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are stu...

متن کامل

Multidimensional Tauberian Theorems for Vector-valued Distributions

We prove several Tauberian theorems for regularizing transforms of vector-valued distributions. The regularizing transform of f is given by the integral transform M φ(x, y) = (f ∗ φy)(x), (x, y) ∈ R n × R+, with kernel φy(t) = yφ(t/y). We apply our results to the analysis of asymptotic stability for a class of Cauchy problems, Tauberian theorems for the Laplace transform, the comparison of quas...

متن کامل

Cauchy Principal Value Contour Integral with Applications

Cauchy principal value is a standard method applied in mathematical applications by which an improper, and possibly divergent, integral is measured in a balanced way around singularities or at infinity. On the other hand, entropy prediction of systems behavior from a thermodynamic perspective commonly involves contour integrals. With the aim of facilitating the calculus of such integrals in thi...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

New Reverses of the Cauchy-bunyakovsky-schwarz Integral Inequality for Vector-valued Functions in Hilbert Spaces and Applications

Some new reverses of the Cauchy-Bunyakovsky-Schwarz integral inequality for vector-valued functions in Hilbert spaces that complement the recent results obtained in [1] are given. Applications for the Heisenberg inequality are provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11080392